31 research outputs found

    Micro-mechanical characteristics and dimensional change of Cu-Sn interconnects due to growth of interfacial intermetallic compounds

    Get PDF
    Sn-based solder alloys are extensively used in electronic devices to form interconnects between different components to provide mechanical support and electrical path. The formation of a reliable solder interconnects fundamentally relies on the metallurgic reaction between the molten solder and solid pad metallization in reflowing. The resultant IMC layer at the solder/pad metallization interface can grow continuously during service or aging at an elevated temperature, uplifting the proportion of IMCs in the entire solder joint. However, the essential mechanical properties of interfacial IMC (i.e. Cu6Sn5, Cu3Sn) layers, such as Young s modulus and hardness, are drastically different in comparison with Sn-based solder and substrate. Therefore, the increasing fraction of interfacial IMCs in the solder joint can lead to significant deformation incompatibility under exterior load, which becomes an important reliability concern in the uses of solder joints for electronic interconnects. In the past decades, extensive research works were implemented and reported regarding the growth of interfacial IMC layers and its effect on the mechanical integrity of solder joints. But, the following fundamental issues in terms of mechanical and microstructural evolution in the uses of solder joints still remain unclear, demanding further research to elaborate: (1) The protrusion of IMCs: Though the growth of interfacial IMC layers along the diffusion direction in solder joints were studied extensively, the growth of IMCs perpendicular to the diffusion direction were reported in only a few papers without any further detailed investigation. This phenomena can crucially govern the long-term reliability of solder interconnects, in particular, in the applications that require a robust microstructural integrity from a solder joint. (2) Fracture behaviour of interfacial IMC layers: The fracture behaviour of interfacial IMC layers is a vital factor in determining the failure mechanism of solder joints, but this was scarcely investigated due to numerous challenges to enable a potential in-situ micro-scale tests. It is therefore highly imperative to carry out such study in order to reveal the fracture behaviour of interfacial IMC layers which can eventually provide better understanding of the influence of interfacial IMC layers on the mechanical integrity of solder joints. (3) Volume shrinkage: The volume shrinkage (or solder joint collapse) induced by the growth of interfacial IMC layers was frequently ascribed as one of the main causes of the degradation of mechanical reliability during aging due to the potentially resulted voids and residual stress at the solder/substrate interface. However, very few experimental works on the characterisation of such type of volume shrinkage can be found in literatures, primarily due to the difficulties of observing the small dimensional changes that can be encountered in the course of IMCs growth. (4) Residual stress: The residual stress within solder joints is another key factor that contributes to the failure of solder joints under external loads. However, the stress evolution in solder joints as aging progresses and the potential correlation between the residual stress and the growth of interfacial IMC layers is yet to be fully understood, as stress/strain status can fundamentally alter the course of total failure of a solder joint. (5) Crack initiation and propagation in solder joints: Modelling on the mechanical behaviour of solder joints is often undertaken primarily on the stress distribution within solder joints, for instance, under a given external loading. But there is lack of utilising numerical analysis to simulate the crack initiation and propagation within solder joints, thus the effect of interfacial IMC layers on the fracture behaviour of the solder joints can be elaborated in further details. In this thesis, the growth of interfacial IMCs in parallel and perpendicular to the interdiffusion direction in the Sn99Cu1/Cu solder joints after aging was investigated and followed by observation with SEM, with an intention of correlating the growth of IMCs along these two directions with aging durations based on the measured thickness of IMC layer and height of perpendicular IMCs. The mechanism of the protrusion of IMCs and the mutual effect between the growth of IMCs along these two directions was also discussed. The tensile fracture behaviour of interfacial Cu6Sn5 and Cu3Sn layers at the Sn99Cu1/Cu interface was characterised by implementing cantilever bending tests on micro Cu6Sn5 and Cu3Sn pillars prepared by focused ion beam (FIB). The fracture stress and strain were evaluated by finite element modelling using Abaqus. The tensile fracture mechanism of both Cu6Sn5 and Cu3Sn can then be proposed and discussed based on the observed fracture surface of the micro IMC pillars. The volume shrinkage of solder joints induced by the growth of interfacial IMC layers in parallel to the interdiffusion direction in solder joint was also studied by specifically designed specimens, to enable the collapse of the solder joint to be estimated by surface profiling with Zygo Newview after increased durations of aging. Finite element modelling was also carried out to understand the residual stress potentially induced due to the volume shrinkage. The volume shrinkage in solder joints is likely to be subjected to the constraint from both the attached solder and substrate, which can lead to the build-up of residual stress at the solder/Cu interface. Depth-controlled nanoindentation tests were therefore carried out in the Sn99Cu1 solder, interfacial Cu6Sn5 layer, Cu3Sn layer and Cu with Vickers indenter after aging. The residual stress was then evaluated in the correlation with aging durations, different interlayers and the locations in the solder joint. Finally, finite element models incorporated with factors that may contribute to the failure of solder joints, including microstructure of solder joints, residual stress and the fracture of interfacial IMC, were built using Abaqus to reveal the effect of these factors on the fracture behaviour of solder joints under applied load. The effect of growth of IMC layer during aging on the fracture behaviour was then discussed to provide a better understanding of the degradation of mechanical integrity of solder joints due to aging. The results from this thesis can facilitate the understanding of the influence of interfacial IMC layers on the mechanical behaviour of solder joints due to long-term exposure to high temperatures

    Perpendicular growth characteristics of Cu-Sn intermetallic compounds at the surface of Sn99Cu1/Cu solder interconnects

    Get PDF
    The growth of intermetallic compounds (IMCs) on the free surface of 99Sn-1Cu solder joints perpendicular to the interdiffusion direction has been investigated in this work. The specimens were specifically designed and polished to reveal a flat free surface at the solder/Cu interface for investigation. After aging at 175°C for progressively increased durations, the height of the perpendicular IMCs was examined and found to follow a parabolic law with aging duration that could be expressed as y=0.11ty = 0.11\sqrt t, where t is the aging duration in hours and y is the height of the perpendicular IMCs in μm. For comparison, the planar growth of IMCs along the interdiffusion direction was also investigated in 99Sn-1Cu/Cu solder joints. After prolonged aging at 175°C, the thickness of the planar interfacial IMC layers also increased parabolically with aging duration and could be expressed as hIMC=0.27t+4.6h_{\rm{IMC}} = 0.27\sqrt t + 4.6, where h is the thickness in μm and t is the time in hours. It was found that both the planar and perpendicular growth of the IMCs were diffusion-controlled processes, but the perpendicular growth of the IMCs was much slower than their planar growth due to the longer diffusion distance. It is proposed that Cu3Sn forms prior to the formation of Cu6Sn5 in the perpendicular IMCs, being the reverse order compared with the planar IMC growth

    Micro-mechanical and fracture characteristics of Cu6Sn5 and Cu3Sn intermetallic compounds under micro-cantilever bending

    Get PDF
    This study focuses on the fracture characteristics of Cu6Sn5 and Cu3Sn micro beams under micro-cantilever bending tests. These micro beams were fabricated by focused ion beam (FIB) from the Sn-rich solder joints aged at 175 °C for 1132.5 h, and then tested using a nanoindenter with a flat tip. Experimental results show that both Cu6Sn5 and Cu3Sn micro beams underwent elastic deformation before their failure. From fractographic analysis, both cleavage fracture and intergranular fracture can be identified from the tested Cu6Sn5 micro beams, while only intergranular fracture was found in Cu3Sn micro beams. Furthermore, based on the experimental results, finite element analysis was carried out to evaluate the tensile fracture strength and strain of Cu6Sn5 and Cu3Sn micro beams. For Cu6Sn, the tensile fracture strength was estimated to be 1.13 ± 0.04 Pa and the average tensile strain was 0.01. The tensile fracture strength and strain of Cu3Sn were evaluated to be 2.15 ± 0.19 GPa and 0.016, respectively

    Diffusion barrier property of electroless Ni-W-P coating in high temperature Zn-5Al/Cu solder interconnects

    Get PDF
    The operating temperature of high-temperature electronics can significantly promote the growth of intermetallic compounds (IMCs) at solder/substrate interfaces, particularly for low-cost Zn-based solders because of the rapid rate of reaction of Zn with Cu. Thus, a reliable and robust diffusion barrier is indispensable for suppressing the reactions between solder and substrate. In this work, a ternary Ni-W-P alloy was prepared via electroless plating. Its diffusion barrier property was evaluated by comparing the microstructures of IMC layers in Zn-5Al/Ni-W-P/Cu and Zn-5Al/Cu interconnects after liquid-solid reaction for prolonged durations. When the reaction lasted for 30 min, the thickness of the Al3Ni2 produced in the Zn-5Al/Ni-W-P/Cu solder interconnects was only 2.15 μm, whereas the thickness of the interfacial layer of Cu-Zn IMCs (CuZn4, Cu5Zn8 and CuZn) at the Zn-5Al/Cu interface was 94 μm. Because of the unbalanced growth of the IMCs in the Zn-5Al/Cu interconnects, notable numbers of Kirkendall voids were identified at the CuZn4/Cu5Zn8, Cu5Zn8/CuZn and CuZn/Cu interfaces after prolonged liquid-solid reaction. By contrast, the Al3Ni2 layer in the Zn-5Al/Ni-W-P/Cu solder joints remained intact, showing the potential to effectively enhance the mechanical reliability of electronic devices

    Evolution of the hardness and Young’s moduli of interlayers in Sn99Cu1/Cu solder joints subjected to isothermal ageing

    No full text
    The interlayers at solder/pad interface are critical to the reliability of solder joints; hence, their mechanical properties is of vital importance. However, the correlation between service duration and evolution of mechanical characteristics of these interlayers has seldom been reported. In this work, hardness and Young’s moduli of Cu6Sn5, Cu3Sn and Cu were evaluated by nanoindenation after ageing for every 100 h up to 500 h. It was found that hardness and Young’s moduli of Cu6Sn5 and Cu3Sn dropped with aging and reached the bottom at 200 h and 300 h, respectively, followed by a gradual increase. This U-shape curve was generally opposite to the evolution of corresponding parameters in Cu. Evolution of mechanical properties of IMCs can be attributed to constrained volume shrinkage induced by solidstate reactions that producing IMCs. The resultant stress ultimately affected load–displacement curves recorded by nanoindentation tests. The observed reverse evolution trend of examined parameters of Cu and adjacent IMC layers was a result of mutual constraint posed by Cu3Sn/Cu interface

    Study of height reduction of Sn99Cu1/Cu solder joints as a result of isothermal aging

    No full text
    Sn99Cu1/Cu solder joints were investigated after isothermal aging at 175°C for different lengths of time under vacuum conditions. The results revealed height reduction of the solder of approximately 1.2 μm after aging for 1132.5 h. This was primarily attributed to growth of a layer of interfacial intermetallic compounds. The reduction was measured by use of a copper block containing a recess filled with solder, which was reflowed then polished flat. Height reduction of the solder joint during aging was found to obey the parabolic law Δh= ⁣ ⁣ 0.031t\Delta h = -\!\!\hbox{ }0.031\sqrt t, and was in excellent agreement with theoretical calculation

    Design and Fabrication of a UV Fused Silica GRISM Prototype for the Hobby-Eberly Telescope

    No full text
    Modern telescope imaging spectrographs utilize high-quality gratings to achieve high resolution and throughput. However, when it comes to UV wavelengths, traditional volume phase holographic gratings (VPHGs) mostly used in telescopes may not provide ideal efficiency due to the absorption caused by the dichromate layer. In this study, we introduce a prototype of a fused silica transmission GRISM (prism-grating-prism) that offers several notable advantages over emerging VPHGs. Firstly, it exhibits a peak diffraction efficiency up to 95% and the efficiency is higher than 80% in the wavelength range 370-470nm. Secondly, it demonstrates high mechanical stability in humid or other harsh environments. Thirdly, it provides significant angular dispersion while maintaining a nearly constant angular dispersion profile. Here, we report a universal and convenient optical design method for the GRISM to meet the requirements of the Hobby-Eberly Telescope (HET). Additionally, we provide the fabrication procedure involving holographic lithography, ion-beam etching, and wafer direct bonding technology

    Temperature-Immune, Wide-Range Flexible Robust Pressure Sensors for Harsh Environments

    No full text
    Flexible pressure sensors possess vast potential for various applications such as new energy batteries, aerospace engines, and rescue robots owing to their exceptional flexibility and adaptability. However, the existing sensors face significant challenges in maintaining long-term reliability and environmental resilience when operating in harsh environments with variable temperatures and high pressures (∼MPa), mainly due to possible mechanical mismatch and structural instability. Here, we propose a composite scheme for a flexible piezoresistive pressure sensor to improve its robustness by utilizing material design of near-zero temperature coefficient of resistance (TCR), radial gradient pressure-dividing microstructure, and flexible interface bonding process. The sensing layer comprising multiwalled carbon nanotubes (MWCNTs), graphite (GP), and thermoplastic polyurethane (TPU) was optimized to achieve a near-zero temperature coefficient of resistance over a temperature range of 25–70 °C, while the radial gradient microstructure layout based on pressure division increases the range of pressure up to 2 MPa. Furthermore, a flexible interface bonding process introduces a self-soluble transition layer by direct-writing TPU bonding solution at the bonding interface, which enables the sensor to achieve signal fluctuations as low as 0.6% and a high interface strength of up to 1200 kPa. Moreover, it has been further validated for its capability of monitoring the physiological signals of athletes as well as the long-term reliable environmental resilience of the expansion pressure of the power cell. This work demonstrates that the proposed scheme sheds new light on the design of robust pressure sensors for harsh environments

    Additional file 3: Figure S2. of Rapid evolutionary divergence of diploid and allotetraploid Gossypium mitochondrial genomes

    No full text
    Gene order comparison among mitogenomes of Gossypium. Colored blocks represent regions of conserved gene clusters in the Gossypium genomes and genes in bold are located in the repeat regions. Rpl2 and atp8 are shown in red bold to indicate that they are just close to or partially overlapped with the repeat sequences. (JPEG 1006 kb

    Additional file 5: Table S2. of Rapid evolutionary divergence of diploid and allotetraploid Gossypium mitochondrial genomes

    No full text
    Nucleotide distances and divergence time (MYA) between mitochondrial sequences and corresponding numts in G. raimondii. Note: a twenty numts represent the largest mitochondrial fragments transferred into the nuclear chromosomes in G. raimondii. (DOCX 17 kb
    corecore